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RECURRENCE FORMULAS 
FOR MULTIVARIATE ORTHOGONAL POLYNOMIALS 

YUAN XU 

ABSTRACT. In this paper, necessary and sufficient conditions are given so that 
multivariate orthogonal polynomials can be generated by a recurrence formula. 
As a consequence, orthogonal polynomials of total degree n in d variables that 
have dim I-Id common zeros can now be constructed recursively. The result is 
important to the construction of Gaussian cubature formulas. 

1. INTRODUCTION 

It is well known that every sequence of univariate orthonormal polynomials 
{Pn }IO=o satisfies a three-term relation 

(1.1) XPn(X) = anpn+I(x) + bnpn(x) + anIPn-I(x). 

Moreover, the Favard theorem states that if {Pn } satisfies (1.1), then Pn is 
orthonormal if and only if an > 0 (cf. [4, 20]). The relation (1.1) is also called 
the recurrence formula, as it can be rewritten as 

(1.2) Pn+I (X) = (xPn (X) - bnPn (x) - an Pn- (x)), 

and used to define Pn recursively. In particular, for given {an } and {bn } with 
an > 0, one can use (1.2) and P-i = 0, to generate a sequence of orthonormal 
polynomials recursively. 

For multivariate orthogonal polynomials the situation is much more com- 
plicated. To state the corresponding theorem, we need some notations. Let 
N0 be the set of nonnegative integers. For n E N0 we denote by fld the set 
of polynomials of total degree at most n in d variables, and rLd the set of 
all polynomials in d variables. Let Y be a linear functional defined on 17d 
such that y(g2) > 0 whenever g E I-d and g :$ 0. Such an Y is called 
square positive. For convenience, we assume Y(1) = 1 throughout this pa- 
per. Two polynomials P and Q are said to be orthogonal with respect to Y 
if Sf(PQ) = 0 . For each n E N0, let rnd = dim rId - dimLi1 = (n+d-1). 
Throughout this paper, the letter d is reserved for the number of variables or 
the dimension. It is fixed and will be omitted sometimes. 
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For a sequence of polynomials {Pjn7jn } , where Pjn is of total degree n, we 
use the vector notation 

(1.3) Pn1(x) = [P1 (x) , P2 (x), ..., (X)]T. 

For our convenience, we shall write {}0 instead of {PPI}" jOn??=O If P = 

(Pij) is a matrix whose entries are polynomials in Id, we denote by Y(P) the 
matrix (Y'(Pij)) . We say that Pn is orthogonal if its elements are orthogonal to 
HIn- I. The matrix Y(PFn,pFT) is positive definite if Pn is orthogonal, since Y is 
square positive, and it is an identity matrix if Pn is orthonormal. Throughout 
this paper, the n x n identity matrix is denoted by In, or simply I. The 
notation A: i x j means that A is a matrix of size i x j. For x E Rd we write 
X=(XI1... ,Xd). 

We now state the Favard theorem for the multivariate orthogonal polynomi- 
als. This theorem is proved recently in [21, 22]; it improves upon a result of 
Kowalski [6, 7] by removing one excessive condition in his theorem. 

Theorem 1.1. Let {FP}n ?O , Po = 1, be a sequence in rd . Then the following 
statements are equivalent: 

(1) There exists a linear functional which is square positive and makes 
{ Pnl"?? an orthonormal basis in Id. 

(2) For n > 0, 1 < i < d, there exist matrices An, i: rn x rn+1 and Bn, i: rn x 
rn such that the polynomial vectors Pn satisfying the three-term relation 

(1.4) XiPn =An, iPn+ 1+ Bn, iPn +A T i,iPn-I I <i <d, 

where P- = 0, A11 =0, and 

(1.5) rankAn = rn+i, An = (AT lI ...AT d)T. 

This theorem shows that the three-term relation characterizes the orthogo- 
nality. However, for d > 2 this theorem is not as strong as the classical Favard 
theorem (d = 1) . Actually, one direction of the theorem says that if there is a 
sequence of polynomials Pn that satisfies the three-term relation and the rank 
condition, then it is orthonormal. But it does not answer the question when 
and which Pn will satisfy such a relation. The rank condition (1.5) implies that 
there exist matrices Dn, i: rn x rn+I such that 

d 

(1.6) ZD7T,1An,i = I, 
i=l 

where we may take (D T 1I I. IDTn d) as the generalized inverse of An . By (1.6) 
and (1.4) we get 

d d d 

( 1.7) Pn+I (x) =,DT, ixiPn (x)- D T 
iBn, iPn (x) - D T jA T_ I iPn- 1 (x), 

i=l i=l i=l 

which is a recurrence formula. However, for given matrices An, i and Bn, i, the 
polynomial sequence {Fn} defined by (1.7), P-1 = 0, and Po = 1, in general 
does not satisfy the three-term relation, thus, is not orthogonal. Our main result 
in ?2 gives necessary and sufficient conditions on An, i and Bn, i such that this 
polynomial sequence is orthogonal. This enables us to define the multivariate 
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orthogonal polynomials recursively, which is important in constructing {1PI 
that has a maximum number of zeros. Here, zero of P, means the common 
zero of the components in P1 . It is known that P, has at most dim IlI,-1 zeros 
([cf. [18]), and the Gaussian cubature of degree 2n - 1 exists if and only if the 
corresponding Pn has that many zeros ([13, 17]). We apply our results of ?2 to 
the construction of Gaussian cubatures in ?3. 

2. RECURRENCE RELATION 

2.1. Main results. Let An,i: rn x rn+1 and Bn,i: rn x rn be matrices that 
satisfy the rank condition (1.5). Let D,f T: rn+I x rn be matrices such that 
DT= (DT 11 ... IDT d) is the generalized inverse of An, 

(2.1) D TAn =I- 

We note that (2.1) is equivalent to (1.6). We now define a sequence of polyno- 
mials {Fn} by the recurrence formula 

d 

(2.2) Pn+1 (x) = ED,T ixiPn(X)-EnPn(x)-FnPn- i (x), 
i=1 

where P- = 0, Po = 1, and 

d d 

(2.3) En = D[T iBn, i and Fn = Dn, TAT_ T 

i=1 i=1 

Our main result in this section is as follows. 

Theorem 2.1. Let {k}l"%= be defined by (2.2). Then {fk}?k?o satisfies the 
three-term relation (1.4) if and only if Bk, i are symmetric, and 

10 (rank condition). 

(2.4) rankAk,i = rk, rankAk = rk+l; 

20 (commuting conditions). 

(2.5) Ak,iAk+i, j =,Ak, jAk+i, i, 

(2.6) Ak, iBk+1,j +Bk,1Ak,i = Bk,jAk,i +Ak,jBk+1,i, 

(2.7) Ak_ l, ik_l, j+ Bk, Bk, j+ Ak, Ak j 

- A k1 Ak-l,i + Bk, jBk,i + Ak, jAkI,, 

for i $ j, 1< i, j < d, and k > 0, where A-1,i = 0. 
Moreover, {Fn} forms a basis for rl. 

Combining this result with Theorem 1.1, we can state the following theorem. 

Theorem 2.2. Let {fk}l'O be defined by (2.2). Then there is a linear functional 
2 that is square positive and makes {1Fk} Io an orthonormal basis for 1ld if 
and only if Bk,i are symmetric, Ak,i satisfy the rank condition (2.4), and 
together they satisfy the commuting conditions (2.5), (2.6), and (2.7). 

This theorem reveals one major difference between univariate and multivari- 
ate orthogonal polynomials. Namely, the three-term relation in the multivariate 
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case is different from the recurrence relation. For the recurrence formula to gen- 
erate a sequence of orthogonal polynonmials, its coefficients have to satisfy the 
commuting conditions. Nevertheless, the following observation seems to be 
interesting. The commuting conditions are not needed in proving the Favard 
Theorem, but they are essential for proving that under certain additional con- 
ditions on the coefficient matrices, the linear functional in Theorem 1.1 has an 
integral representation with respect to a nonnegative Borel measure on Rd [22, 
25]. Actually, the reason that we call (2.5), (2.6), and (2.7) commuting con- 
ditions is as follows. For a given sequence of polynomials that satisfies (1.3), 
we can use the coefficient matrices An, i and Bn, i to define a family of block 
Jacobi matrices and consider them as linear operators defined on 12. These 
conditions are the ones that make these block matrices commuting. Once these 
operators commute, we can use the spectral theorem for a commuting family 
of selfadjoint operators to establish the existence of the measure. 

We note that if {1P,}10 is only orthogonal instead of orthonormal, then 
Sn-l1Pn is orthonormal, where Sn is a nonsingular matrix that satisfies SnSnT - 

2(PFnE2pFT) . Therefore, our theorem may be stated in terms of polynomials that 
are only orthogonal. However, it has to be properly modified since the three- 
term relation in this case takes a somewhat different form, with a matrix C7T[i 

related to An,i through Sn, in place of ATn-1,i. Also, the commuting condi- 
tions become more complicated. Nevertheless, it seems better to look at the 
orthogonality of multivariate polynomials from the point of view of the poly- 
nomial space rl being a direct sum of subspaces spanned by polynomials that 
are components of Pn . This is the point of view we have adopted in [21, 22]. 

We shall prove Theorem 2.1 in ?2.3. In the next subsection we give some 
preliminaries and study properties of orthogonal polynomials. We note that the 
square positivity of Y is not essential in most results of the next subsection, 
where it can be replaced by the condition Y(p2) 54 0. 

2.2. Properties of orthogonal polynomials. The basic properties of multivariate 
orthogonal polynomials are studied in [21, 22, 24]. In particular, if {FPn}li?o 
is a sequence of orthogonal polynomials, then the coefficient matrices satisfy 
the rank condition (2.4) [6, 21] and the commuting conditions [22]. So the 
necessity of Theorem 2.1 is known. Here we prove several lemmas that will be 
used in the proof of the sufficiency. These lemmas are about the properties of 
the matrices in the three-term relation; they are of some interest in themselves. 

For a =(a,..., ad) E Nd and x = (xl, ., xd) E Rd we write xa 
xl ... Xad For n E N0 we denote by xn the rn-tuple {xal}1 E l where 

the elements are numbered according to the lexicographical order in {a E No 
I aI = n}. We let Ln,i denote the matrices of size rn-I x rn that satisfy 

(2.8) Ln, xn=xixn-1, 1<i<d. 

Clearly, rank Ln,i = rn-l 1 and rank Ln = rn, where Ln = (L[ TI... ILT d)T. 

Moreover, the following identity holds: 

(2.9) Ln, iL<T ?=I, h < i < d. 

Lemma 2.3. For n E No, 1 < i < j < d, there holds 
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Proof. From (2.8) it follows that for any x E Rd 

Ln , iLn+1, jXn+l = XiXjX n-I1 = Ln, jLn+l , Xn+l n 

Since the rank of Lnn iLn+l Lj- Ln- Ln+l i is at most rn -, the desired identity 
follows. D 

We write 

(2.10) Pn = Gnxn + Gn,n-xn-l + Gn,n2xn2 +X 

where Gn, i: rn x ri and Gn = Gn, n is called the leading coefficient of Pn . Our 
next lemma gives the connection between the leading coefficient of orthogonal 
polynomials and the matrix An, i in the three-term relation. 

Lemma 2.4. If {FPn}?O0 satisfies the three-term relation and An, i satisfy the rank 
condition (1.5), then for all n > 0, Gn is invertible. Moreover, 

(2.1 1) An, i = GnLn+i,iG-+ 
Proof. If Pn satisfies the three-term relation (1.4), then the coefficient matrices 
of Xnf+l on both sides of the three-term relation are equal. This leads to the 
identity 

(2.12) An, Gn+i = GnLn+i, 1 < i<d. 

Therefore, it follows that 

An Gn+ i = diag{ Gn, . , Gn}Ln+ 1 . 

We now use induction on n. Since Po = 1, we have Go = 1. Suppose that 
Gn has been proved to be invertible. Then diag{Gn, .. , GnI is invertible, and 
from rankLn+l = rn+i we have 

rank(AnGn+ ) = rank(diag{G, ... , Gn}LLn+) = rn+l 

Therefore, by (1.5) and a well-known rank inequality [5, p. 13] we have 

rank Gn+ ? > rank(An Gn+ l) > rank An + rank Gn+ l - rn+ l = rank Gn+ l i 

Thus, it follows that 

rank Gn+i = rank(AnGn+i) = rn+l 

Hence, Gn+i is invertible. The induction is complete. The identity (2.11) 
follows from (2.12). o 
Remark. To prove that Gn is invertible for a fixed n, we need only to assume 
that {Pk } satisfies the three-term relation for 0 < k < n - 1 . 

Our next lemma is a combinatorial identity that gives an interesting relation 
among the r' s. The lemma is known ([15, p. 8]; I thank Professor H. Schmid 
for providing me with this reference), but for completeness we give a simple 
proof here. The idea of this proof will be used in our further development. 

Lemma 2.5. For n E No, d > 1, we have 
d 

(2.13) rn = Z(-1)k+l (k) rn-k, 
k=1 

where rk = 0 for k < 0. 
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Proof. Let An = {ae E FoNd: IaI = n}, and n,- {i a E Nd: IaI = n, and 
ai O}. Let ,u(X) denote the number of elements in a set X. By counting 
the number of integer solutions of lal = n, we have 1u(An) = rn, t(.n,Ai) = 

rn-, 1 A(n,i n An,j) = rn-2 ( X(.n,4i nA n,j n r/n,k) = rn-3. From X4n = 

1n, I U * * * U An, d and the inclusion-exclusion principle 

,U(Xn) =E U(Xn,i) 
1<i<d 

- E ,l(Sfn, Xn Anj) +*** + (_)d+l lU(Xn .. nAn, d) 5 
1<i<j<d 

the identity (2.13) follows. El 

For any given sequence of matrices Cl, ..., Cd, where all C1 are of size 
s x t, we define a matrix c:ds x ( 2d )t as follows. Let -i, j: txds, 1 < i,j < 
d, i $ j , be block matrices defined by 

(2.14) =(.. IOICfT ... I -CI1O ...); 

i.e., the only two nonzero blocks are CT at the ith block and -CiT at the jth 
block. The matrix Ec is then defined by using -j as blocks in lexicographical 
order, 

(2.15) 3c = [,26I,31 **-wd-1,d]- 

In particular, we have that 3Ln is of the size drn-1 x (d ) )rn, and that ' is 
of the size drn x (d )rn-I . We need to know the rank of these two matrices. 

Lemma 2.6. For d > 2 and n > 1, there holds 

rank3LT = drn - rn+i 

Proof. Since the matrix ELT is of size drn x (2 ) rn- , we shall prove that the 
dimension of the null space of 6fLT is rn+l . Let Y = (yT , yd)T E Rdrn 

where Yi E ]Rrn . We consider the homogeneous equation in drn variables 
=T Y -O. 

From (2.14) and (2.15) it follows that these equations can be rewritten as 

(2.16) Ln,iYj =Ln,jYi, 1 < i < j < d. 

By (2.8), the elements of Ln are either 0 or 1. Moreover, there is exactly one 
1 in each row, and the rank of Ln, i is rn . Using the notation An and An, i 
in the proof of Lemma 2.5, we can consider Ln,i as transforms from An to 
An, i . We fix a one-to-one correspondence between the elements of .?n and the 
elements of a vector in Rrn , and write Yi j = Ln, i Yi . We can then write the 
linear systems of equations (2.16) as 

(2.17) YilXn,j = YlXn, 1< i< j <d. 

This gives (d )rn-I equations in drn variables of Y, but not all of them are 
independent. For any distinct integers i, j, and k, we have 

YI IAvn, j n =n k Yj Aln,,lnAn, k, Yi l'n, kn a",,J =Yk1n,lnAn,S 

Yj =n,kn n,= Yklxn,nxn, n, 
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Therefore, there are exactly ji(,r, j n,4 k) = r,-2 duplicated equations among 
these three systems of equations. Counting all combinations of three different 
systems of equations in (2.17), we have ( d) r,2 equations. But among these 
equations some are counted more than once. Repeating the above argument 
for four distinct systems of equations in (2.17), we have that there are 

(xn, i nn, j nxn, k) = rn-3 many equations that are duplicated. There are (d) 

combinations of four different systems of equations. We then need to consider 
five systems of equations, and so on. Therefore, we have that there are 

(3)rn - (4)rn-3 + *- + (_1)d+l rn-d+l = (-)k+l (k)rn-k+l 
k=3 

duplicated equations in (2.17). Thus, among the (d )rnI equations of (2.16), 
the number of independent ones is 

(d d 
)+ d d d 

(Zrn)I I1 ()rn-k+l = (-1)k() rnk+l 
k=3 k=2 

Since the dimension of the null space is equal to the number of variables minus 
the number of independent equations, and there are drn variables, we have 
that 

d d dd 
dim{null TT} = drn - Z(-1 k (k)rk+l = E(- i)k+1 = 

k=2 k=1 

where the last equality follows from Lemma 2.5. The proof is complete. El 

Lemma 2.7. For d > 2 and n > 1, there holds 

rank = drnn- - rn-2. 

Proof. We shall prove that the dimension of the null space of EfT is rn-2 . For 
y - (yT . yT)T E Rdrn-, where Y1 E Rrn-, we consider the homogeneous 
equation T Y = 0. By definition, this equation is equivalent to the systems 
of linear equations 

(2.18) L T Y. =L T.yi. I < i < j d. 

We use An and An,i as in the proof of the previous lemma. We note that 
Yn iYj is a vector in ]Rrn, whose coordinates corresponding to An,i are those 

of Yj and whose other coordinates are zeros. Thus, the equation (2.18) implies 
that elements of Yj are nonzero only when they correspond to A'n, j nf An,i 
in L7[ YJ, that is, ( , and the nonzero elements of Y1 are 
(L T jYi)l, 1n , .* Moreover, these two vectors are equal. Since for any X E 

Rrn we have 

Ln_l,jLn,iX = Xlxn,,nxn,j 

which follows from Ln X1 iLn jxn = X,Xjxn-2, from (2.9) we have that 

(L 'iyi) n " = Ln-l,jLn,i(LY) = Ln-ljY = Yjl n- 

Therefore, the nonzero elements of Yi and Yj satisfy 
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Thus, there are exactly ,u4'- 1, ) = r,-2 independent variables in the solution 
of (2.18). That is, the dimension of the null space of EfT is r,-2 El 

This lemma will be used in ?3. Our next lemma deals with the singular value 
decomposition of A,DT. 
Lemma 2.8. Let Ak i and Bk i be given matrices such that the Ak, i satisfy the 
rank condition (2.4) and the commuting condition (2.5). Let {fk}k% satisfy 

(2.19) XiPk= Ak,ipk+1 +Bk,ipk +A/'l,Pkl 1 <k < n-i, 1 < i <d. 

Then Y E Rdrn is in the null space of I - AnD7T if 7'T Y = 0. Moreover, if 
n-i 

Y = (YIT YdT) Yi E Rrn , then UTT Y = 0 is equivalent to 
n-I 

Anl,iyj = An_l,jyi, 1 < i < j<d. 

Proof. The rank condition (2.4) implies that the singular value decomposition 
of An is of the form ([5, p. 414]) 

An = Vn (I) WnT, 

where In: rn+1 x rn+l is a nonsingular diagonal matrix, Vn: drn x drn, and 
Wn: rn+1 x rn+l are orthogonal matrices. Moreover, the columns of Vn are 
the eigenvectors of AnAT[. Let Vn = (Vn,IIVn,2), where Vn,1: drn x rn+I and 
Vn,2: drn x (drn - rn+i) . Then by 

AAT = V n T ]V 

the columns of Vn,2 form an orthogonal basis for the null space of AnAT. 
Since Dnf is the generalized inverse of An, we have that Dnf = Wn n(En-1O)V 
and 

IAnDn (n', Vn, 2) [o I] r Vn, 2 ,. 

Therefore, it follows that Y belongs to the null space of I - AnD7T if and only 
if Vn,2V V2Y = 0. The last equation is equivalent to, VT Y = 0, since the 
columns of Vn, 2 are orthogonal. 

Let Gn be the leading coefficient matrix of Pn that satisfies (2.19). From 
(2.12) and the definition of the matrix E it follows that 

diag{Gn ... , Gn }AA = LTdiag{Gn-1, * Gn-1, 

where the size of the block diagonal matrix on the left is drn x drn, and the 
one on the right is ( d ) rn -l x (d)rn-1. Therefore, by Lemma 2.4, the remark 
that follows it, and Lemma 2.6 we have 

(2.20) rank AT = drn - rn+l. 
n-I 

From (2.5), (2.14), and (2.15), it follows that A?[EAT = 0, which, by (2.1), is 
n-i 

equivalent to 
AnA AT = O. 

n-I 

Therefore, the columns of EAT belong to the null space of AnAn[. Since 

rankAnA T = rankAn = rn+1 , the rank condition (2.20) shows that the columns 
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of EWAT actually span this null space. Thus, there exists a matrix Qn: ( _ )rni x 

(drn-rn+i), whose columns are linearly independent, such that V,,2 = 5"AT Qn 
Therefore, Jn,2Y =- if TT Y =? ? 

n-I 

Corollary 2.9. Let d = 2 and n > 1. Then Y = (Y7', Y2T), Yi E l2rn, is in 
the null space of I - AnDJT if and only if An-1, 1 Y2 = An-1 ,2Y1 

Proof. For d = 2 we have 2rn - rn+l = rn_ Therefore, the matrix Qn in the 
proof of Lemma 2.8 is of size rn_ x rn and invertible. Thus, Vn,,2Y = 0 if 
and only if __T Y = 0. In this case, _AT = (AT_1 2, -AnT1)T. O 

n-I n- 

Lemma 2.10. Let An-1 i and An,i satisfy (2.11). Let Gn and Gn+1 be invert- 
ible. If the Yj E Rrn l ? < j < d, satisfy 

An_l,iyj= An-l,SjYi I< 1i<j j<d, 

then there exists a Y e Rrn+1 such that Yj = An, j Y. 
Proof. First we prove that if the Xj e Rrn satisfy Ln, iXj = Ln, jXi, then there 
is an X E Rrn+1 such that Xj = Ln+l jX X We can actually define X by 

Ln+i , iX = Xi, for XlXn,l I = Xi- 

Indeed, using Xlx[, = Xi, we have 

Xlxn+,,inxn+l ,J = Ln, iLn+i, jX =Ln, iXj 5 

and using Xl4r+i = Xj, we have 

XI.rn+l in xn+, .1= Ln,jLn+l,iX = Ln,jXi. 

Therefore, X is well defined. Now let Yj satisfy the assumption. Then by 

(2.11) we have 

Yj = Ln,jG'YYi. 

Thus, there is a Y e Rrn+l such that 

Ln+l,jGn+l Y = G Yi 

By (2.11), this is the same as An,iY = Y1. O 

2.3. Proof of Theorem 2.1. Suppose that {IP}n??O is defined recursively by 

(2.2) and that the matrices An,i and Bn,i satisfy the rank condition (2.4) and 

the commuting conditions (2.5), (2.6), and (2.7). We shall use induction. For 

n =0 wehave P0 = 1, P-L =0; thus 

d d 

pi= ZED TiX, -E ZD iBo,t. 
i=1 i=1 

Since Ao, i and Do, i are both of size 1 x d, we have that An and Dn are both 

d x d matrices. It then follows from D TAo = I that AoDT = I, which implies 

Ao, iD'T =i, j . Therefore, we have 

Ao, jP = xj- Boj, = xjPo -BojO 

We now assume that we have proved that 

(2.21 ) Ak,jPk+1 = XiPkBk, jP'kAk1k -ijPk-1 0<k<n- 1. 
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We show that this equation also holds for k = n. 
From (2.10), (2.2), and (2.3), we get 

d 

Gn+i - ZDT, iGnLn+l, i 
i= 1 

d 

Gn+I, n D DT, i (Gn, n- 1 Ln, i -Bn, iGn) 
i=l1 

d 

G +i,n-I ED T i(Gn, n-2Ln-1,i -Bn, iGn, n-I - AnT1iGn-l)- 
i=1 

First we prove that for each j the highest three coefficients of 

An,jPFn+l = An,j(Gn+ixn+l + Gn+l,nxn + Gn+l,n-ixn- + ) 

are equal to the corresponding coefficients of 

XjP'n -Bn, jP'nAn-_ljP'n-I Qn, x+ + Rn j +Sn, jxn- 

where 

(2.22) Qnj =GnLn+l,j 

(2.23) Rn'= Gn-n-ILn Bn,jGn 

(2.24) Sn, j =Gn,n-2Ln_l,j j-Bn, jGn,n-I -An-_ IlGn-l 

We need to prove that, for 1 < jd, 

d d 

An,j Z D7T iQn,i = Qn,j, An,j DpT iRn,i = Rn,j, 
i=l i=l 

d 

An,iZ EDTiSn,j = Sni,. 
i=1 

We can write these equations in a more compact form as 

AnDnTQn = Qn, AnDTRn = Rn, AnDTSn = Sn. 

Therefore, we need only prove that the columns of Qn, Rn, and Sn belong to 
the null space of I - AnDT. But by Lemma 2.8, this reduces to showing that 

An-1, iQn,jy = An-l,yjQn, i An- 1, iRn, j = An-l ,ijRn, i 
An_l ,iSn, j =An-l,jjSn,i- 

From (2.21), we have that 

(2.25) Gn- = Ln, i An- 1, iGn 

(2.26) Gn-l ,n-2Ln-1, i = An-B, iGn ,n-I-Bn-1, iGn-l I 

(2.27) Gn_ 1, n-3Ln-2, i = An- 1, iGn, n-2 - 1, iGn- 1, n-2 - An-2, iGn-2 

By (2.22), (2.25), and Lemma 2.3 we get 

An-l,iQn,j = Gn-ILn,iLn+l,j = An-l,jQn,i 
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By (2.23), (2.25), (2.26), Lemma 2.3 and (2.6), we have 

An-I iRn,j-= An-1, i(Gn,n-Ln, -Bn jGn) 

=Gn 1, n _2Ln1 l, iLn,j -Bn-I i Gn-IlLn, j- An-I , iBn,j Gn 
=Gn_l1,n-2Ln-1 ,iLn, j -(Bn-I , iAn-l, j+ An-I , iBn, j)Gn 
=An-Il jRn , i- 

Similarly, from (2.24), (2.27), (2.25), (2.26), Lemma 2.3, (2.6), and (2.7) we 
get 

An-l ,iSnj = An-1,j(Gn,n-2Ln-1,j - Bn jGnn--AT Gn-1) 

= n_,Gn-2Ln2 in-l,j j-(Bn-l,iGn-1, n-2 + n-2, in-2)Ln,j 

-An_1,ji(Bn, jGn, n-1 + AnTT jGn_l) 

= Gn- 1,n-2Ln-2,iLn-1, j-Bn-l ,i(An- , jGn,n-I + Bn- , jGn- ) 

n-A_2 n-2, jGn_-I n-1,j(Bn,jGn,n-1 + An-_,jnl 

= Gn- 1, n-2Ln-2, iLn- 1, j -(Bn- 1, iAn- 1, j + An- 1, iBn, j) Gn, n-lI 

-(n-2An-2, j + Bn_- 1,iBn- 1, i + An-l 1, AnT- 1, j)Gn- 1 

= An- 1, jSn, i 

Therefore, we have proved that the highest three coefficient matrices of An, jPn 
and Xj1Pn - Bn, jP'n - An- 1j are equal. In other words, we have proved 

(2.28) An,jPFn+l = XjPn - Bn,jPn - AT ;,jPn-l + Qn-2,1j 

where Q?n-2,1 E Ir'n are polynomial vectors whose components are elements of 
rln-2 . 

To complete the proof, we now prove that Qn-2, i = 0 . Multiplying equation 
(2.28) by DTi and summing up for 1 < i < d, from the recurrence formulae 
(2.2), (2.3), and equation (2.1), we get 

d d 

(2.29) DnT j?2n-2, j = ZDT, jAn,jPn+i - Pn+1 = 0. 
j=1 j=1 

On the other hand, from (2.21) and (2.28) we have 

An- 1, iQn-2,j = An- 1, i(An,jP>n+l + Bn,}jIPn + AnT1 jP -i - X1iPn) 

=An- 1, i (An, jP>n+ 1 + Bn , jlPn + AnT l, jn- 1 

-xi(XilPn_- 1-Bn- 1,iPn- 1- ATn-2, iPn-2) 

Xn-Xl,i(An, jPBn+l +lBn,jIPn +Bn-l, +PTn- +T 

-xjxiP>n- 1 + Bn- , i i(An- 1, jPin + Bn- 1 , jP>n- I + ATn-2, jPn-2) 

+ An-2, i(An-2,1jPn- + B21 2 +n3jn-3) 
= XiXj Pn_ I + An-1 j AnSjP)n+ l 

+ (An_ 1, iBn, i + Bn- 1, iAn- 1, j)P>n 
+ (An- 1,jiAnT_ jj+Bn_ 1,jBn- 1, j+ AnT_ jAn2j ' -+x1x}1P~n +n-2+ n-2,jiPn- - 

+ n(A2, n-2,j +Bn-1,jAn-2j)Pn-2 + -, -3jn3 
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By the commuting conditions (2.5), (2.6), (2.7), and xixjPn-I = x1xi1Pn,1, it 
follows that 

(2.30) An- I, iQn-2, j = An- 1, jQn-2, i 

From (2.28) we get 
An, jGn+1 = GnLn+l ,ii 

By Lemma 2.4, Gn+1 is invertible. Therefore, we can apply Lemma 2.10 to 
conclude that there is a vector Qn such that Qn-2, i = An, i.n . It then follows 
from (2.28) and (2.1) that Qn = 0, and thus, Qn-2,i = 0. The proof is 
complete. 0 

3. GAUSSIAN CUBATURE FORMULAE OF DEGREE 2n - 1 

In this section we consider the application of Theorem 2.1 to the construction 
of Gaussian cubature formulae of degree 2n - 1 . Let Y be a square positive 
linear functional. A linear functional 

N 

IN (f) Ak fk(Xk) 5 )k > 05 Xk E R 5 

k=1 

is called a cubature formula of degree m, if Y(f) = IN(f) whenever f E nd, 

and ( (f*) $ IN (f*) for at least one f* E nd+I . For fixed m the cubature 
with a minimal number of nodes N is called the minimal cubature, or the 
Gaussian cubature. A lower bound for N is [19] 

N > dim I-Id 
- [m/21, 

We are interested in Gaussian cubature of degree 2n- 1 , that is, m = 2n- 1 . In 
this case, the following important result is due to Mysovskikh [ 13]. In order that 
there exists a cubature formula which is exact for polynomials in H2n-I and 
uses N = dim I - I knots, it is necessary and sufficient that Pn has N distinct 
real zeros. Here, Pn is the vector of multivariate orthogonal polynomials with 
respect to Y defined by (1.3). A zero of Pn means a common zero of the 
components of Pn I 

It is known that all zeros of Pn are real, simple, and distinct. Moreover, Pn 
has at most dim Hln- many zeros. Furthermore, the following theorem is true 
(cf. [13, 18, 24]). 

Theorem 3.1. The polynomial vector Pn has N = dim HI_1 distinct zeros if and 
only if 

(3.1) Anl,jAT 1j = An-,l jAT 

for all 1 < i, j < d, where the An ,1i 's are the coefficient matrices in the 
three-term relation (1.4). 

In view of this theorem, Pn does not have N = dim rln1 zeros in general. 
Actually, if Y is centrally symmetric, i.e., Y(xiyk-i) = 0, 0 < i < k, for 
all odd k E N, then Moller [12] proved that for d = 2 the Gaussian cubature 
of degree 2n - 1 does not exist; thus, the corresponding Pn does not have 
dimIHn-I zeros. On the other hand, a positive example is constructed in [14] 
for polynomials of degree 5 in two variables. The existence of common zeros 
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of multivariate polynomials is in general very difficult to establish. There does 
not seem to be a general theorem that guarantees a sequence of multivariate 
polynomials to have a given number of common zeros. However, for orthogonal 
polynomials we have 

Theorem 3.2. Let An,i: rn x rn+I, Bn,i: rn x rn be given matrices. Let {fPn} n=O 
be defined by (2.2) and P-IF = 0, P0 = 1 . Then the orthogonal polynomial Pn 
has exactly N = dim fln1 distinct real zeros if and only if Bn, i is symmetric, 
An,i satisfy the rank condition (2.4) and the condition (3.1), and together they 
satisfy the commuting conditions (2.5), (2.6), and (2.7). 

Clearly, this theorem is a consequence of Theorems 2.1 and 3.1. By the 
Favard theorem, it actually characterizes all possible Gaussian cubatures of 
degree 2n - 1 with respect to square positive linear functionals. However, 
Favard's theorem only establishes the existence of a linear functional Y; for 
practical purposes we would like to know whether there is a measure ,u such 
that 5ff = f f d,u. From the results in [7], Y always has an integral represen- 
tation with signed measure. But it may fail to possess an integral representation 
with nonnegative measure [3, 8]. For this, we quote the following result from 
[22], which is proved by using the spectral theorem for a commuting family of 
selfadjoint operators. 

Theorem 3.3. Let {IFPn }', IPo = 1, be a sequence in -d . Then the following 
statements are equivalent: 

(i) There exists a nonnegative Borel measure ,u with compact support in Rd 

such that {IPn }IO=o is orthonormal with respect to ,u. 
(ii) {FPn }I?=o satisfies the three-term relation (1.4), the rank condition (1.5), 

and 
sup IIAk,ill < 00 sup IIBk,ill < 00, 

k>0 k>0 

where II means the spectral norm for matrices. 

The boundedness condition in (ii) can be relaxed to some extent by allow- 
ing a noncompactly supported measure in (i) [25]. For practical purposes this 
theorem is still too abstract. The problem of getting from the coefficients ma- 
trices to the measure is certainly a very challenging problem. The importance 
of our Theorem 3.2 is that it gives a constructive way to generate a sequence 
of polynomials that has an exact number of real common zeros. That is, if we 
can find sequences of matrices {An, i} and {Bn, i} that satisfy (2.4)-(2.7) and 
(3.1), then we can use (2.2) and (2.3) to generate a sequence of polynomials 
{fn}; Pn will have exactly dimrln,_ real, distinct, common zeros. However, 
the conditions on An, i and Bn, i are quite restrictive. Our next result narrows 
the possible choices of An, i and Bn, i considerably. 

Theorem 3.4. Let An,i and Bn,i satisfy (2.4), (2.5), (2.6), and (2.7). If 

(3.2) Bn, iBn, i = Bn , jBn, i E 1 < i < i < d,5 

then (3.1) cannot be satisfied. For d = 2 we actually have 

(3.3) an := rank(An, l AnT, 2-An, 2An, 1) = 2[(n + 1)/2]. 
Proof. Suppose An,i and Bn,i satisfy the given conditions and (3.2). From 
(2.7) and (3.2) we have 

(3.4) An, AT _An, jA,T i =-(A T 1,iAn-l - A T-1,jAn-l,i). 
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Thus, if (3.1) is satisfied, then 

Ani,An_I,j 
=0, jAn- = ? 1 < i <j < d. 

From the definition of _ in (2.14) and (2.15) we can rewrite these equations 
as 

An-1-A, = 0. 
Thus, the columns of EAn_ belong to the null space of An-, . By Theorem 
2.1 we can construct Pn using An, i and Bn, i, and by Lemma 2.4, the leading 
coefficient matrix Gn of Pn is invertible. Therefore, as in the proof of Lemma 
2.8, we have from (2.12) and Lemma 2.7 that 

rankSAn, = rank=Ln = drn-I - rn-2 

On the other hand, we have from (2.5) that Anl AT = 0, and it follows from 
n2 

(2.4) and (2.20) that the columns of SAT form a basis for the null space of 

ATn-1 Therefore, 

drn- -rn-2 = rankAn-, ? rank _2 = n- r 

This is possible only for d = 1 since rn-2 < rn for d > 2. 
We now prove (3.3). Let An An,IA 2 - An,2A 1. Since An is skew- 

symmetric, we know that rank An is an even integer. We consider the null 
space of An . If xn+1 E lRrn+? satisfies 

(3.5) (An+i, iAT+2 -An+1,2AT+I, 1)xn+ = 0, 
then, by (3.4), 

(An1 A 2-A 2An, 1)Xn+I = 0 

Hence, 

[.An -I O] An, 2 n 

and 
ATTnAnxn+ 1-= 0 

This shows that TnAnxn+l is in the null space of An . Since the columns of 
Tn(A )n-1 span the null space of An , there exists xn,- E Rrnl such that 
TnAnxn+l = Tn(AT)n-1Xn-I X Since Tn is clearly invertible, we actually have 
AnXn+I = (AT)n-IXn-i or 

(3.6) Xn+1 = DT(A )n-IXn-I 

by (2.1). From (2.5) it follows that (An-1,1, An1,2)TnAn = 0. Thus, 

(3.7) (An- 1 I lAnT 2An-1,2AnT I, )xn- I = ?- 

Equations (3.5), (3.6), and (3.7) enable us to use induction. Indeed, since Ao 
is of size 1 x 1 and skew-symmetric, we have Ao = 0. Thus, rankA0 = 0. 
For n = 1 we have from (3.4) that Al = ATToAo, from which it follows 
that Al is invertible. Therefore, rankA1 = 2. Hence, rankA2m = 2m and 
rank A2m+I = 2m + 2. 0 

For d = 2 the rank equation (3.3) was first proved by Moller for the case 
Bn, i = 0 . In [24] it is shown that Pn can have at most N - an zeros. Our proof 
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of (3.3) follows the approach used in [18]. For a given linear functional Y on 
Id, Theorem 3.4 shows that if y(XlPkP/T) = Y(X2PkIPT), then Gaussian cu- 
bature of degree 2n - 1 is not possible. Actually, for most classical functionals, 
Gaussian cubature of degree 2n - 1 does not exist. Examples of these function- 
als include all those considered in [9], in particular, the integrals with respect 
to the Jacobi weights on a rectangle, simplex, or sphere ([1, 2]). On the other 
hand, there are square positive linear functionals that lead to Gaussian cubature 
of degree 2n - 1; see [14, 10]. Our Theorem 3.2 provides a method to generate 
these cubatures, or rather, the nodes that these cubatures are based on. The 
difficult question remains of how to find the measure ,u from the coefficient 
matrices of the three-term relation. In view of the importance of Gaussian cu- 
batures in analysis, it can be expected that those measures for which Gaussian 
cubatures exist may have some interesting and peculiar properties. 
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